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ABSTRACT

A collective dissipation mechanism responsible for the secular evolution of the disks of spiral galaxies is
proposed and analyzed. The key element in this process is the outward transport of angular momentum.
Although it has been previously shown by Lynden-Bell & Kalnajs (1972) that a trailing spiral pattern trans-
ports the angular momentum outward, it has also been claimed by them that the exchange of angular momen-
tum between the disk stars and the spiral density wave happens only at the wave-particle resonances. This
implies that for the majority of the disk stars there is no secular orbital decay or increase, and, as a result,
there is little redistribution of disk surface density over the lifetime of a spiral galaxy. In this paper, we
demonstrate that such a conclusion results from the fact that Lynden-Bell & Kalnajs had solved the problem
locally and considered only the orbital response of stars to an applied spiral potential. They did not incorpor-
ate the constraint for a self-sustained global spiral solution. It is shown that this constraint is in the form of a
phase shift, which exists between a self-consistent, open spiral potential and density pair. A phase shift
between the potential and density spirals indicates that there is a torque applied by the spiral potential on the
spiral density, and a secular transfer of energy and angular momentum between the disk matter and the spiral
density wave. For the actual density distribution of a spiral wave mode, it is shown that the sense of this
phase shift is such that for a trailing spiral, the disk matter inside the corotation radius should lose energy
and angular momentum to the density wave and accrete inward, and the matter outside corotation should
gain energy and angular momentum from the wave and excrete. As a result, the disk surface density should
become more and more centrally concentrated, together with the buildup of an extended outer envelope. This
trend is consistent with the direction of entropy evolution in self-gravitating systems (Antonov 1962; Lynden-
Bell & Wood 1968) and is also consistent with the trend found in the recent N-body simulations of stellar
disks (Donner & Thomasson 1994; see also the simulation results in this paper). It is further demonstrated
that a local physical mechanism can be found to account for the secular dissipation as is revealed and
required by the phase shift. This mechanism takes the form of a temporary local gravitational instability of
the streaming disk material at the spiral arms. The presence of this instability, coupled with the fact that a
phase shift appears to cause a finite amplitude, open spiral wave to steepen until there is sufficient dissipation
in the spiral instability to offset the steepening tendency, indicate that the nature of the large-scale spiral
density waves are large-scale spiral gravitational shocks. The typical width of the spiral gravitational shock is
on the order of 1 kpc, the same as the effective mean free path of stars in the spiral-arm local gravitational
instability. As a result of the instability condition at the spiral arms, a single disk star, when crossing the
spiral arms, experiences many small-angle scatterings produced by the combined potential of its neighboring
stars, besides experiencing the smooth axisymmetric potential and the smooth spiral potential. The is leads to
a secular decay in the mean orbital radius for those stars inside corotation, as well as a secular increase in the
mean orbital radius for stars outside corotation.

Subject headings: galaxies: evolution — galaxies: kinematics and dynamics — galaxies: spiral —
galaxies: structure — Galaxy: structure — waves

1. INTRODUCTION

It is well known that for systems governed by long-range
forces such as gravity or electromagnetic forces, the secular
evolution of these systems is often determined chiefly by collec-
tive processes. In particular, in nonequilibrium systems where
the microscopic means of evolution become too slow, these
systems often first build a tool, i.e., create a global structure by
going through a nonequilibrium phase transition, and then
make use of the collective properties of such structures to
accelerate the speed of reaching equilibrium. In this paper, as
well as in the two subsequent papers in this series (Zhang
1995b, c, hereafter Papers II and III), we seek to establish that
the spiral structure in disk galaxies is, in fact, another example
of such a tool built by nature employing the long-range pro-
perty of gravitational interactions. It is shown that the emer-
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gence of spiral structure greatly accelerates the speed of the
evolution of a disk galaxy toward higher entropy configu-
rations, i.e., those with a centrally concentrated core, together
with an extended and diffused envelope.

The evidence that there is a secular dissipative process oper-
ating in the stellar disks of spiral galaxies has already emerged
in the early and recent N-body simulations (Sellwood & Carl-
berg 1984; Carlberg 1986; Donner & Thomasson 1994). In
these simulations, it is found that there is significant redistri-
bution of disk matter, which amounts to halving the disk expo-
nential length scale in a Hubble time (Carlberg 1986). For the
quasi-stationary spiral mode obtained by Donner & Thomas-
son (1994), it is found that on average the disk matter inside
corotation accretes to the center, and the matter outside the
corotation excretes, so a more centrally condensed configu-
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ration gradually develops, together with a diffused outer
envelope.

The phenomenon of radial mass accretion and excretion
observed in these N-body simulations, which include no gas
component and its associated dissipation effect, has no expla-
nation within the framework of the existing density wave
theory. For the case of a quasi-stationary spiral, a single star’s
orbit conserves the Jacobi integral in the corotating frame. The
stellar trajectory oscillates between two limiting radii, and no
secular orbital increase or decrease is possible. Even in the
transient spiral case, as we will show later in this paper, for a
single star moving in an applied spiral potential, only heating
in the form of increased epicycle amplitude is possible; again,
no secular mean-radius change is ever observed. These facts
lead us to speculate that whatever mechanism causes the
secular redistribution of disk matter observed in the N-body
simulations has to be related to the collective nature of the
self-sustained global spiral instability and has to involve the
graininess of many neighboring stars, since a single orbit in an
applied spiral potential never displays secular radial migration.

There is also a second hint given by the result of the N-body
experiments. The spiral patterns which spontaneously emerge
from the amplification of noise in these N-body simulations are
predominantly of the trailing type, if a realistic basic state
which has decreasing angular velocity with increasing galactic
radii is used. This is true even for the quasi-stationary spiral
mode obtained by Donner & Thomasson (1994), which lasted
for more than five revolutions. From the “antispiral” theorem
of Lynden-Bell & Ostriker (1967), we know that, unless there is
dissipation in the underlying basic state, a quasi-stationary
trailing spiral mode cannot be obtained from the set of
dynamical equations which is manifestly reversible. So it is
only logical to infer that there is some form of dissipation
present in these N-body experiments. “But stars are nondis-
sipative!” This is an objection the author has often heard.
Indeed, one of the goals of the current paper is to discredit the
myth that dissipation in a galactic disk can occur only through
the mediation of interstellar gas. It is true that stars cannot
convert a significant amount of their orbital energy into radi-
ation. However, in terms of their ability for the irreversible
conversion of regular orbital motion energy into random
motion (epicycle) energy, which is the sense in which we use the
word “dissipation,” stars can indeed be considered dissipative.
The stellar dissipation is mediated by the spiral density wave
and is achieved through a series of small-angle scatterings
when a star crosses the spiral arm. The fact that stars can
scatter off their neighboring stars, despite the large mean free
path they have, is due to the presence of a temporary local
gravitational instability at the location of spiral arms, as we
will demonstrate later. The dissipated orbital energy is partly
used to heat the disk locally and partly carried to the outer
disk by the trailing spiral density wave to be absorbed there. So
the outer disk becomes a partial sink to the dissipated orbital
energy.

The organization of the current paper is as follows. In § 2, as
well as in the associated appendices, we introduce the concept
of the phase shift between a self-consistent spiral potential and
density pair, as well as the secular dissipation effect it indicates.
In § 3 we discuss how the dissipation effect indicated by the
phase shift is achieved, through analyzing the local stability
condition at the spiral arms, and through establishing that a
self-sustained global spiral pattern is a propagating front of
local gravitational instability and gravitational shocks. Section
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4 compares the results of the current paper with previous
results in the literature and also outlines the astrophysical con-
sequences of the spiral collective dissipation process, the details
of which will be further analyzed in Papers IT and III.

2. THE PRESENCE OF A PHASE SHIFT BETWEEN A
SELF-CONSISTENT SPIRAL POTENTIAL AND
DENSITY PAIR

The secular morphological evolution of a disk galaxy is ulti-
mately gauged by the redistribution of angular momentum.
From a comparison with other types of collective phenomena,
we expect that the secular evolution of spiral galaxies is medi-
ated chiefly by the spiral structure. Lynden-Bell & Kalnajs
(1972, hereafter LBK) have already shown that, in general, a
trailing spiral structure transports angular momentum
outward. However, the proper means for loading the angular
momentum of the disk stars onto the wave is yet to be found.
In order for the disk stars to exchange angular momentum
with the wave at galactic radii other than the resonances, we
ask what kind of conditions must a spiral structure satisfy? In
the following we will show that, for a spiral structure that is
quasi-stationary on the dynamical timescale, the only possible
way for the stars and the wave to exchange angular momen-
tum secularly is to have a spiral density distribution which is
phase-shifted in azimuth with respect to the spiral potential
distribution.

Consider a disk galaxy with a total potential distribution of
¥ and a total density distribution of X, each of which contains
an axisymmetric part and a perturbation of the spiral form.
For an annular ring located at radius r with width dr, the
(z-component) torque applied by the total potential field on the
material in this annular ring is

T() = rdr f T S x V), dé
0
=rdr J:" — Z(%)dd) , 1)

where we have used r = r# + z3.
Equation (1) can also be written in the form

2z
T0) = rdr f —x, ) L8Py
0 d¢
where the subscript 1 on the potential denotes the spiral per-
turbation component, since the axisymmetric component of
the potential gives a zero ¢ derivative. Manifestly, equation (2)
describes the torque applied by the spiral part of the potential
on the total disk surface density. Therefore it also gives the
amount of the angular momentum transport from the spiral
wave to the disk matter in this annular ring per unit time.
Equation (2) can be further written in the form of

_ 2 Y \(r, ¢)
T(r)=rdr L- —2,(r @) 2%

with the subscript 1 on both the potential and density vari-
ables. This is because the axisymmetric component of the
density integrates to a null value in equation (2) as long as the
perturbation potential is periodic in ¢. Equation (3), however,
should still be regarded as the torque applied by the spiral
wave on the total disk matter in the annular ring,

Dividing the above expression by 2nrdr, the area of the
annular ring, we obtain that the azimuth-averaged torque

¢, ©)
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density J, which is equal to the averaged rate of angular
momentum flow per unit area from the density wave to the
disk material, at a particular radius r is

__1 V4, ¢)
() - J i ) — 26 . (4

A similar expression was first written down by Kalnajs (1972)
in analyzing the angular momentum exchange between the
stellar and gaseous density waves.!

The torque integral in equation (4) vanishes for potential
and density profiles which have identical waveforms, even if
they are nonsinusoidal. This can be demonstrated by expand-
ing these waveforms into their Fourier components, which
would have the property that the Fourier coefficients of the
same harmonics for the potential and density are proportional
to each other. Using trigonometric identities, we can easily
show that the torque integral in equation (4) for such a pair of
waveforms vanishes. Therefore the noncoincidence of the
potent1al and density spirals in the form of an equivalent phase
shift? is the only means for secular angular momentum transfer
between the disk matieral and a quasi-stationary spiral density
wave. This is what gives importance to the study of the phase
shift.

In the Appendices, we show that a phase shift can be found
for the potential and density spirals related through the
Poisson equation, in the solution of the linearized Eulerian
equations of motion, as well as in the orientation of the linear
periodic orbit. The Poisson equation gives a constant phase
shift with radius for a spiral pattern which is infinite in radial
extent. This constant phase shift is positive (which means that
the density leads the potential) for spirals with radial density
falloff slower than r~32 and is negative for faster falloff. The
sign of the phase shift obtained from the Eulerian equations of
motion and from the linear periodic orbit solution is such that
the spiral potential lags the spiral density inside corotation,
and vice versa outside corotation. This shows that, in principle,
a self-consistent spiral wave solution can be constructed with a
phase shift between the potential and density spirals. our
N-body simulation in the next section confirms this point.

Before closing this section, we want to comment briefly on
the meaning of the phrase “energy and angular momentum
exchange between the disk material and the density wave.”
Another question the author has frequently been asked is:
“How could stars give energy and angular momentum to the
wave (or vice versa)? Isn’t the wave itself made of stars?” Yes, a
self-sustained spiral wave is supported by the motion of many
individual stars. However, a wave indeed has a separate exis-
tence other than the straightforward superposition of the indi-
vidual stellar orbits. In the potential field of a relatively large
amplitude spiral wave, it can be shown (Zhang 1995d) that the

T =

! Note that dL/dt in eq. (4) refers to the rate of angular momentum flow per
unit area from the density wave to the disk matter, due to the operation of
spiral gravitational torque. To calculate the net angular momentum gain for
the material in a particular annulus we need also to consider the flux through
the boundaries of the annulus. This, as well as other issues related to the
balancing of the angular momentum budget for a quasi-stationary spiral
mode, will be further analyzed in paper I1. We only comment briefly here that
since the process responsible for the angular momentum transfer given by eq.
(4) is irreversible in nature, as will be shown in § 3, the amount of angular
momentum transfer from the wave to the disk matter (or vice versa) due to
gravitational torques is independent of the amount of the flux through the
boundaries of the annulus.

2 The definition of the equivalent phase shift for nonsinusoidal waveforms
will be given in Paper II.
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orbits themselves become chaotic. After each crossing of the
spiral arm, a typical star loses all information (memory) of its
previous orbital phase. Thus the information about the wave is
not stored merely in the individual star’s orbital orientation, as
appears to be the case in Kalnajs’s kinematic spiral representa-
tion (Kalnajs 1973), which is accurate only for infinitesimal
wave amplitude (Kalnajs himself had, in fact, already stressed
this point in his 1973 paper). Rather, the information about the
wave is stored in the collective force field (or potential field) of
the wave, which “collapses the chaos ” inherited in the individ-
ual star’s orbital motion. The local field in the spiral pattern is
effectively contributed by all the stars in the disk, due to the
long-range nature of gravitational interaction. Thus, when we
say that a star exchanges energy and angular momentum with
the wave, this exchange occurs simultaneously with all the rest
of the stars in the disk which contribute to the wave motion.
This exchange is not random but is organized by the wave. So,
for practical purposes, it is infinitely more convenient to talk
about the energy and angular momentum exchange between
the wave and the stars than to talk about the energy and
angular momentum exchange of one star with the rest of the
stars in the disk in the manner constrained by the wave field.

In the next section, we present a detailed analysis of the
collective dissipation process induced by a spiral density wave.
This collective dissipation process, on the one hand, is made
possible by the presence of the phase shift and, on the other
hand, is also responsible for the continued maintenance of the
phase shift between a self-consistent spiral potential and
density pair.

3. A COLLECTIVE DISSIPATION PROCESS INDUCED BY A
SELF-SUSTAINED SPIRAL WAVE

It is well known that the relaxation and evolution of systems
governed by long-range forces are determined predominantly
by collective effects. The physical behavior of such systems is
not completely reflected in the result of a single orbit calcu-
lation (see, e.g., Pfenniger 1986). For example, although a single
orbit (circular or epicyclic) is known to be stable in the poten-
tial field of an axisymmetric galaxy, global axisymmetric and
bisymmetric instabilities can still grow spontaneously from
such disks (Toomre 1964; Lin & Shu 1964). On the other hand,
certain systems consisting of irregular orbits, such as a
common gas ensemble, are known to be structurally stable.

It is also well known that collective effects can enhance the
speed of relaxation in many plasma systems (Kulsrud 1972).
Collective effects, which invariably involve local or global
instabilities, operate by forcing a particle to “collide with” or
scatter off a bunch of other particles collected together by the
wave. The effective impact parameter in such a “collision”
process is of the order of the size of the inhomogeneity formed
(Kulsrud 1972). In effect, besides experiencing the smooth part
of the potential, a particle which participates in the collective
process also bounces off the local (short-to-intermediate range)
scattering potential, with the “ graininess” of the neighboring
particles coming into full play.

Following is an incomplete list of references on collective
effects in the context of galactic dynamics: Gilbert (1968),
Kulsrud (1972), Gurzadyan & Savvidy (1986), Pfenniger (1986),
Kandrup (1988), Romeo (1990), and Weinberg (1993).

3.1. Local Gravitational Instability at the Spiral Arms

For collective effects to operate in a spiral galaxy, individual
stars have to be aware of their “neighbors” directly, besides
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experiencing the smoothed axisymmetric as well as the
smoothed spiral potential. However, as is well known, binary
encounters in disk galaxies are extremely rare compared to the
age of a galaxy (Binney & Tremaine 1987, p. 4). Under this
circumstance, the scattering of a star off its neighboring stars
can only happen when the disk is locally gravitationally
unstable. So the first step in establishing that a spiral structure
can induce collective dissipation is to show that a spiral struc-
ture can lead to local gravitational instability (albeit a tempo-
rary one) in an originally marginally stable disk.

3.1.1. Local Stability Condition at the Spiral Arm and Interarm Region
The local stability condition for a flattened stellar disk

against axisymmetric perturbations is given by (Toomre 1964)

Q_..

6 K
33668 1 ©)

where o, is the radial velocity dispersion, k is the epicycle
frequency, X is the surface density of the disk, and Q is
Toomre’s stability parameter. For a fluid disk, the factor 3.36
in the denominator is changed to 7. An order-of-magnitude
estimate (Binney & Tremaine 1987, p. 313) shows that equation
(5) can also serve as the approximate stability criterion for the
formation of more localized instability features in a rotating
disk, if the compression and expansion are mainly in the radial
direction.

At the different azimuthal locations, the streaming motion of
the disk material, under the influence of a spiral perturbation
potential, changes the values of the radial velocity dispersion
a,, the epicycle frequency k, and the surface density X from
their original values appropriate for an axisymmetric disk. In
the following, we will derive the variations of these parameters
with the phase of the spiral, and calculate how these variations
influence the value of Q at the spiral arm and interarm region.
We will first consider a linear and WKBJ (i.e., tightly wrapped)
spiral wave, and then discuss what modifications we need to
introduce when considering a more open type of wave in the
nonlinear regime. Part of the results for the WKBJ waves (the
variation of x with the spiral phase) has been previously
derived by Balbus & Cowie (1985) using a different approach.

For an m-armed spiral, the gravitational potential can be
written as (Rohlfs 1977)

V(r, §) =V o(r) + Ar) exp{ilmQ,t — m¢ + @)1}, (6)

where | A| < | ¥, |, and where ®(r) is related to the pitch angle i
and the wavenumber k of the spiral through
do m

$=rtani=k’ )

with k <0 corresponding to a trailing spiral. The WKBJ
approximation further demands that

|kr|> 1. ®8)
The solution for the azimuthal velocity is
kA 1
v(r, ¢) c(r) + io— ZQ 1— v2 + x
x exp {i[(mQ,t —m¢ + ©(r)]}, )

where v is the normalized interaction frequency for mode m,
v=m(Q, — Q)/x, x = k*c’/x}, and where v,, 6,9, Qo, and
are the unperturbed circular velocity, radial velocity disper-
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sion, angular frequency, and epicyclic frequency, respectively.
For convenience, in the following discussions we assume a flat
rotation—curved galaxy, i.e., v(r) = v, is a constant.

The corresponding density variation is

1
Z(r, ¢) = Zo(r) — Zo(r) kz T+ x
x exp {i[mQ,t — m¢ + D]} . (10)
Since
= 2Q ‘fig + 402, (1)

in the following we first calculate the change in Q and dQ/dr
due to the presence of a spiral.

The angular frequency at a location (r, ¢) in the presence of
spiral perturbation becomes

o, ¢ = 22
kA 1
=) i T 1 x
x exp {i[mQ,t — m$ + ®(r)]} . (12)
Thereforc,
2 k%4 1
FUCERES 20r 1V +x
x exp {i[mQ,t —m¢ + D(r)]} . (13)

The effective k2 in the presence of the spiral potential can
thus be calculated to be

K2 = xﬁ[[l — k2_;4 12 exp {i[mQ,t — m¢ + @(r)]}}l ,
kg 1—v+x P
(14)
where k3 = 2Q2 for a flat rotation—curved galaxy, and where
we have dropped a few terms of order 1/kr or higher compared

to the dominant terms in deriving equation (14).
On the other hand, from equation (10) we know that

E-1 Ez—é exp {i[mQ,t —m¢d + O]} . (15)
o K2 1—v2+x pulmis,t—m )
We have thus demonstrated that
K Z 0.5
— == . 1
Ko <20> (16)

The change in the velocity dispersion o, depends on the
energy conversion process assumed. If, as in the linear density
wave theory, we assume an adiabatic process for stars entering
and leaving the spiral arms, so that the self-gravitating poten-
tial energy of the streaming stars is temporarily converted into
the random velocities of these stars, we expect that

>
— R 17
2 3, (17)
where we have assumed that the compression is one-
dimensional, as is appropriate for WKBJ waves.

From equations (5), (17), and (16), we see that at the location

of the spiral arm, which corresponds to the location of the
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density enhancement, the epicycle frequency « increases so that
the stabilizing effect of the Coriolis force is increased. The
velocity dispersion increases too by an amount determined by
the degree of density enhancement, and also by the overall
energy conversion process at the spiral arms. The final stability
state at the spiral arm region will be determined by the com-
petition of these different factors.

In the case when only orbit crowding but no energy loss
occurs, the effective Q will not change significantly from its
unperturbed value for the basic state of the disk, i.e., we have
Qarm X Qinterarm = Q for a linear WKBJ wave, due to the fact
that both k and o, in equation (5) scale as X%,

However, for a more open spiral pattern with finite ampli-
tude, the potential field at the spiral arm is generated not only
by the local streaming mass but also by the matter in the rest of
the spiral pattern. The phase shift between the potential and
density spirals of an open spiral pattern (it can be easily shown
that the phase shift for the tightly wound WKBJ wave is zero)
means that a patch of disk material, when entering the spiral
arm, experiences an extra compression contributed by the rest
of the disk matter, besides that contributed by its own self-
gravity. Thus the originally marginal stable disk material
becomes temporarily unstable when crossing the spiral arms.
structure on the originally marginal stable axisymmetric disk.
The local instability at the spiral arms is the constituent of the
global spiral instability. )

In § 3.2, we will use the result of an N-body simulation to
show that a significant variation of Q from the spiral arm to the
interarm region can indeed be observed.

3.1.2. Derivation of the Length Scale of the Local Gravitational
Instability at the Solar Neighborhood

At the solar neighborhood ~10%-20% of the local surface
density is contributed by the gas component, which has
random velocities between 4 and 8 kms~! (Spitzer 1978,
p. 231; Stark 1979; Liszt & Burton 1981). The presence of the
low velocity dispersion gaseous component generally makes
the galactic disk less stable. The quantitative effect of the gas
on the stability condition of the star/gas combined disk can be
analyzed through the two-fluid dispersion relation of Jog &
Solomon (1984).> The distinctive features of the two-fluid
results as compared to the one-fluid ones are, first, in the case
where the stars and gas are separately stable, the combined
two-fluid disk can be unstable; second, the length scale of the
most unstable instability feature is significantly reduced from
that of the pure stellar case. » o
Including the finite—disk-thickness correction, the two-fluid
dispersion relation is in the form (Jog & Solomon 1984)

©® = ${(e; + @) — [@ + a)? — 4, — BB, (18)
where

o = k2 + k%2 — 2nGKE{[1 — exp (—kh)]/kh} , (19)

g = k% + k?v} — 2nGkZ{[1 — exp (—kh,)]/kh,} , (20)

B, = 2nGKE,{[1 — exp (—kh)]/kh,} , @1)

B, = 2nGKZ{[1 — exp (—kh,)]/kh,} , 22)

where o is the angular frequency of the two-fluid instability, h,

and h, are the scale heights, I, and X, are the surface densities,

3 An earlier two-component treatment was given in Lin & Shu (1970),
which also incorporated the finite-disk-thickness effect.
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and v, and v, are the velocity dispersions of the stellar and
gaseous fluids, respectively, and k = 27/J is the wavenumber of
the axisymmetric two-fluid instability under consideration.

Making use of the two-fluid dispersion relation, we plot in
Figure 1 the w? versus 1/ curve for parameters appropriate for
the solar circle. Since there is expected to be extra compression
on the streaming disk matter due to the fact that the potential
and density are phase-shifted with respect to each other, we
have adopted the highest known total surface density at the
solar neighborhood, X ..(r =ry) =80 My pc~? (Bahcall
1984) in the calculation of the instability length scale. From
Figure 1, we see that the solar neighborhood is slightly below
the stability threshold, and the most unstable mode (the one
with the largest magnitude of negative w?) has wavelength

Amost unstable ~ 36 kpc . (23)

The instability structure formed usually has an extent of 1/2
for the region of density enhancement, thus a radius of 1/4.
Therefore, the magnitude of the radus of the instability struc-
ture is

r. ~ 0.9 kpc . (24)

Compared to the galactic orbital circumference at the solar
neighborhood, which is ~50 kpc, the size of the instability
structure can fit comfortably in the circumferential direction.
This length scale is also very close to that of the size of the
giant H 1 and molecular cloud complexes observed near the
spiral arm region of many external galaxies (Elmegreen &
Elmegreen 1983). It is likely that the appearance that these
giant molecular cloud (GMC) complexes are gravitationally
bound is an indication that the underlying stellar disk is also
unstable, since, on the scale of a kiloparsec, the gaseous
material is not likely to be decoupled from the stars in its
stability state.

3.2. Spiral Gravitational Shocks

The presence of a local gravitational instability at the spiral
arms indicates that the streaming disk material experiences

1500 2000

1000
1

w® (km/s/kpc)?

500
—
I

1 L s L s | s P

0 0.5 1 1.5

1/x ( 1/kpe)

FI1G. 1.—Growth rate of the two-fluid instability at the solar neighborhood.
Parameters used: Z,,,,, = 80 M, (Bahcall 1984) (15% of the surface density is
in the gas phase), v, = 30 km s~ ! (Binney & Tremaine 1987), v, ~ 6 km s~ *
(Liszt & Burton 1981; Stark 1979; van der Kruit & Shostak 1984), h, = 175 pc
(Gilmore et al. 1990), b, = 75 pc (Jog & Solomon 1984), x = 36 km s~ ! kpc ™!
(Binney & Tremaine 1987).
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something akin to true collisions* when it crosses the spiral
arm. Therefore, the analogy of the stellar random velocity to
the sound speed of a gas is much better established at the
location of spiral arms. As is well known, over most of the
galactic radii the entry speed of the disk material into the spiral
arms is supersonic; and for spiral forcing strength greater than
~ 3%, the periodic orbits of stars at neighboring galactic radii
are found to intersect (Wielen 1975). Furthermore, the presence
of the phase shift between the potential and density distribu-
tions means that the local state of the disk matter and the wave
has to be in one of the following situations. First, if the wave
pattern has reached a quasi-steady state, then the phase shift
indicates a secular dissipation process as given by the torque
integral in equation (4). Second, if there is insufficient dissi-
pation to acheive a quasi-steady state, then the wave has to
change in shape. A natural way for the wave to change shape is
for it to steepen into a shocklike profile, so that shock dissi-
pation can relieve some of the “stresses” applied or required
by the phase shift. These factors, together with the analogy to
the steepening of nonlinear acoustic waves into shock waves
(Appendix C), point to the formation of galactic scale spiral
shocks in the stellar medium.

The calculation of galactic spiral shocks, originally thought
to exist only in the gaseous component, began with the work of
Fujimoto (1968). The possibility of quasi-stationary spiral
shocks of galactic scale was first demonstrated by Roberts
(1969) within the framework of WKBJ theory, and with the
self-gravity of the gas ignored. Shu, Milione, & Roberts (1973)
demonstrated that, at least in the non-self-consistent case (i.e.,
with the self-gravity of the gas ignored from the forcing spiral
potential), the equilibrium flow solution always contains
shocks as long as the forcing is more than a few percent. A
finite-amplitude spiral potential modifies the velocity field of
the galactic flow from that of entirely supersonic (or entirely
subsonic) to that which contains sonic transitions, and a shock
forms near the location where the supersonic flow velocity
changes to subsonic velocity in the form of a sudden jump. The
time-dependent calculation of the formation and steepening of
spiral shocks was first carried out by Woodward (1973, 1975),
again ignoring the self-gravity of the gas and again using the
WKBJ approximation. Recent work on the nonlinear develop-
ment of spiral structures, although still employing the WKBJ
approximation, has incorporated the self-gravity of the stars
(Shu, Yuan, & Lissauer 1985) and gas (Lubow, Balbus, &
Cowie 1986; Lubow 1988). It is found that the self-gravity of
the disk material generally makes the density peaks formed
near the spiral potential minimum more symmetric than that
of the forced hydrodynamic shock (Shu et al. 1985; Lubow et
al. 1986; Lubow 1988). It is also found that for fully self-
gravitating nonlinear WKBJ waves, the streamlines of the fluid
never cross one another (Shu et al. 1985), so presumably no

* In plasma physics, the term “ collisionless shock ” has been used to refer to
the kind of shock which is associated with the particle-scattering process inside
an instability front (Krall & Trivelpiece 1973), in contrast to the kind of
hydrodynamic shock where true particle collisions are happening. The spiral
gravitational shock we will discuss in this section is, in essence, the same as the
plasma “collisionless shock.” We will, however, not use the term “collisionless
shock ” extensively in the rest of the paper. Rather, we prefer the term “spiral
gravitational shock,” in order first to emphasize that the nature of the insta-
bility we are dealing with here is gravitational and is associated with the spiral
structure itself, and, second, to avoid the misconception that there is actually
any fundamental difference between a true collision and a scattering process—
all collisions are scatterings of varying strength if we look close enough!
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dissipative shocks can form. This result is also hinted in the
earlier nonlinear analysis of the self-consistent WKBJ waves
by Vandervoort (1971).%

From the above mentioned results, and also from the argu-
ments given in Appendix C, we expect that shock formation
could be a general characteristic of the nonlinear development
of the galactic spiral waves even in stellar disks, as long as the
wave is somewhat open in morphology. The presence of a
phase shift between the potential and density of an open spiral
pattern indicates that the streaming matter is, locally, only
partially self-gravitating before entering the spiral arm, and
this provides the possibility for the material to “ unexpectedly ”
shock onto the potential wave as it crosses the spiral potential
minimum.

The most appropriate or satisfying way to demonstrate the
steepening of nonlinear spiral wave modes into spiral shocks is
by the iterative solution of the set of nonlinear Eulerian fluid
equations, as well as the equation of continuity and the
Poisson equation, starting from a known linear spiral modal
distribution for a given basic state, together with the proper
inner and outer boundary treatment. This approach is similar
in spirit to what Lubow et al. (1986) had used for a nonlinear
WKBJ wave. The numerical implementation of this two-
dimensional initial-boundary-value problem seems to be a for-
midable task to the author at the moment. In the following,
however, we will adopt another route by employing the well-
developed technique of N-body calculations. There is an added
advantage for adopting the N-body approach, in that the vis-
cosity due to the graininess of the particles is naturally incor-
porated into the simulation, closely resembling the situation in
real stellar disks.

The N-body code used for the simulation of spiral disks is a
two-dimensional polar code, written by the author using the
algorithms described in Thomasson (1989). The validity of the
code is checked by running the first example described in
Donner & Thomasson (1994), which simulates the sponta-
neous growth of a spiral mode in an unperturbed disk. Reason-
ably good agreements with the results of Donner & Thomas-
son (1994) were found, in terms of the morphology of the spiral
mode formed, its growth rate, pattern speed, and amplitude’
evolution, when using the same set of simulation parameters,
although small differences do exist. These small differences in
the spontaneous spiral mode formed are to be expected, since
these two versions of the N-body codes are implemented in
slightly different ways (for example, Thomasson’s code aver-

5 1t is reasonable outcome that a self-consistent WKBJ wave does not
contain shocks. This is true for the following reasons: (1) A spiral shock
invariably introduces viscous dissipation, therefore the potential is, on the
average, phase-shifted with respect to the density, whereas for a self-consistent
(lowest order) WKBJ wave, the potential is everywhere proportional to the
density (see, e.g., Shu 1992, eq. [11.41]), so no phase shift is allowed. (2) If a
self-consistent WKBJ spiral shock does exist, then its potential will also have a
finite jump at the location of the shock, as has the density (Shu 1992, eq.
[11.41]). This, however, indicates an infinite force, which is the derivative of the
potential. This infinite force cannot be consistently accommodated by the
equation of motion perpendicular to the spiral arm direction (cf. Roberts 1969,
eq. [10]), since some of the terms there are nonlinear in the perturbed quan-
tities. We note, however, that Shu et al. (1985) did not employ the conventional
type of lowest order WKBJ approximation; rather, they had obtained the
potential through an integration of the density distribution of the tightly
wrapped waves. Therefore, the perturbation density they obtained allowed the
cusp-shaped solution which has discontinuous derivatives. True shock solu-
tion is nonetheless absent from their self-consistent nonlinear results even with
such relaxed WKBIJ approximations, presumably because their treatment still
did not introduce a phase shift.
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ages the grid mass and grid force around the centers of the
mesh bin, whereas the code used for the current paper averages
these quantities around the boundary nodes of the mesh bin,
even though the same mesh configuration is used in both
codes). The difference in the details of the spiral mode formed
could also be due to the slight differences in the random
number generation part of the initial position and velocity
assignments for the disk stars.

Although a basic spiral shock structure already emerged in
our simulation using the same set of mesh parameters and
number of particles as used by Donner & Thomasson (1994),
we have decided to use a computation mesh (110 radial divi-
sions and 128 azimuthal divisions) about twice as fine and a
total number of particles (200,000) about 4 times as many as
theirs in the example presented below, in order to better
resolve the shock structure. A gravity softening length of 1.5
times the mesh length unit is used. The cloud-in-cell (CIC)
method is employed for mass and force interpolation. Further
details about the numerical algorithms used can be found in
Thomasson (1989).

For the spiral mode calculated in this paper, we have chosen
to use the same basic-state parameters as those used in Donner
& Thomasson (1994), mainly for the purpose of not having to
recalculate and represent many of the modal characteristics

step 1600
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which are already discussed in their paper, since these take up
a lot of space and are not the central issues of the current
paper. These modal characteristics are nonetheless important
in their own right, so interested readers are encouraged to look
into their paper.

The disk surface density in this case is in the form of a
modified exponential

I(r) = Zole " — e ¥R, 25

where R is a constant scale length and X, is a constant. An
inactive bulge and a rigid halo are also being used, which are
assumed to be of the regular exponential shape. The
(normalized) disk mass is 0.5, halo mass is 0.4, and bulge mass
is 0.1. The scale length used is 10, 5, and 1 for the disk, halo,
and bulge, respectively.

In Figure 2 we plot the calculated disk morphology at six
selected time steps. Note that, since our choice of time step is
twice as fine as that used in Donner & Thomasson (1994), our
time step 3200 corresponds to their time step of 1600, which is
seen to be the time step when the spiral morphology is best
organized for both sets of simulations. This indicates that the
two simulations gave about the same spiral modal growth rate.
The large-scale morphologies of the spiral mode in these two
simulations are also very similar, although the current simula-
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FiG. 2—Time development of an unstable spiral mode in an unperturbed disk. Parameters for the simulation: number of grid cells in the radial direction = 110,
number of grid cells in the azimuthal direction = 128, total number of particles used = 200,000. Every tenth particle used in the simulation is plotted. The time step
used corresponds to 628 steps per rotation period at a radius of 20. The basic-state parameters of this disk are given in Donner & Thomasson (1994).
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FiG. 3.—Enlarged view of the spiral mode of Fig. 2 at time step 3200

tion has much better resolution to define the fine details of the
mode.

In Figure 3 we plot an enlarged view of the spiral morphol-
ogy at time step 3200. Figure 4 plots the calculated phase shift
versus radius at this time step.® Here we observe that the phase
shift is mostly positive in the inner disk, with oscillations which
correspond to the winding of the spiral arms in Figure 3,7 and
is negative in the outer disk. It is reassuring to see that the
transition between the positive and negative phase shifts
happens near the corotation radius of r = 30. To observe this
kind of coherent phase-shift distribution, the spiral model used
would need to have achieved a high degree of organization
throughout the disk. At time steps other than 3200, as the
spiral mode loses its coherence, the phase-shift distribution
also becomes less regular.

Although the global coherence of the nonlinear spiral mode
degrades after time step 3200 (or 1600 in Donner & Thomas-
son [1994]), the underlying m = 2 component of this spiral
mode has been shown in Donner & Thomasson (1994) to
survive with almost the same amplitude and pattern speed
until the end of their simulations, which is about 13 rotation
periods at radius 20. This longevity of the m = 2 mode is also
confirmed in our simulation. The dissolution of the (nonlinear)
spiral modal coherence in the simulations is thought to be
mainly the result of secular heating,® the heating effect is more
pronounced for a simulation which has 10° times fewer par-

6 The definition of equivalent phase shift for nonsinusoidal waveforms,
which is used to calculate the curve in fig. 4, will be given in Paper II.
7 These oscillations can be shown to be due to the truncation of the spiral at

-the outer disk.

8 Certain basic-state and initial condition specifications are also found to
lead to spiral modes which are more robust to dissolution than others. For
example, the global shock pattern of another spiral mode, which we will
present in Paper I1, is much more long lasting than the current one.
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F1G. 4—Phase-shift vs. radius plot for the spiral mode of Fig. 3 at time step
3200. For this pearticular mode, the inner Lindblad resonance is near r = 10,
the corotation radius is near r = 30, and the outer Lindblad resonance is near
r = 42 (Donner & Thomasson 1994).

ticles than a real galactic disk. We will address this issue further
in§4.1.

We now focus on the main issue of our concern here, which
is the formation and steepening of spiral gravitational shocks.
In Figure 3, we could already discern some evidence for the
presence of spiral shocks. Sharp density maxima are seen to be
present at the leading edge of the spiral pattern, reminiscent of
the narrow dust lanes found at the leading edges of the spiral
arms of real galaxies, which are thought to represent the loca-
tion of large-scale gaseous shocks. In Figures 5a-5f, we further
plot the azimuthal distributions of surface density and negative
potential, radial velocity dispersion, epicycle frequency «,
Toomre’s Q-parameter, and the velocity components parallel
and perpendicular to the spiral arms. Here the parallel and
perpendicular velocity components are related to our grid
velocities in the radial and azimuthal direction v, and v,, as
well as to the spiral pattern speed Q, and pitch angle i through
(Roberts 1969)

v, =v,C08 i+ v,sini—Q,rsini (26)

and

vy = —v,8ini+v,cosi—Q,rcosi. 27

The pattern speed for this spiral mode is ~0.006 radians per
time step (again the numerical value appears to be one-half of
that obtained in Donner & Thomasson 1994 because our time
step is half as fine as theirs), and the pitch angle is ~16°8. The
distributions in Figures 5a—5f are obtained by averaging the
relevant characteristic for each individual bin in an annulus
centered around r = 14.5, at time step 3800.

From Figure 5a, we see that the density profile is of the
nonlinear shape similar to that found in the N-body simula-
tions of gaseous spiral shocks of Levinson & Roberts (1981),
with a maximum arm-interarm density contrast of 3 to 1 (for
comparison, Levinson & Roberts obtained a density contrast
of 2 to 1 in their gaseous simulations). Due to the self-gravity of
the disk material, the spiral shock here acquires a more sym-
metric shape, as was also found in the previous gaseous shock
simulations. The potential profile is seen to be phase-shifted
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FiG. 5—Spiral gravitational shock. Different frames show the azimuthal distributions of the following parameters. (@) Surface density (solid line) and negative
potential (dashed line). The density is normalized to have a maximum of 1. The potential has an arbitrary scale and is shifted in the vertical direction to be displayed
on the same frame as the density. (b) Radial velocity dispersion. (c) Epicyclic frequency «. (d) Toomre’s Q-parameter. (¢) Velocity component parallel to the spiral arm.
(f) Velocity component perpendicular to the spiral arm. The centers of the bins where these properties are averaged have a radius of 14.5. the time step is 3800.

from the density profile in the correct sense for a radial loca-
tion inside corotation.

Figures S5a-5d give the same type of variations of X, o,, k,
and Q versus the spiral phase as we have predicted in § 3.1,
except that the radial velocity dispersion o, starts to decrease
not long after we enter the negative potential region (or posi-
tive half-cycle of the potential curve on this plot). The spiral
phase where o, starts to decrease coincides with the phase
where v, suffers a sharp downward jump (Fig. 5f), with the
value of v, going from supersonic (note that the equivalent
sound speed in this case is around 0.04, as is indicated by Fig.
5b) before the jump to subsonic after the jump. This clearly
indicates the presence of a shock.® It has been checked (not
plotted) that the shock actually caused the radial velocity com-
ponent v, itself to change sign near the location of the shock,
which is partially responsible for the minimum of g, observed
there.!® Thus we see that because of shock dissipation, the
velocity dispersion o, at the spiral arm region is smaller than

° In any realistic physical systems which contain dissipation, the transition
from supersonic to subsonic flow can only be accomplished by a shock (see,
e.g., Shu 1992, p. 77; Woodward 1975).

that given by the linear WKBJ theory. This causes Toomre’s
Q-parameter to suffer a drastic decrease in the spiral arm
region, to a value very close to (and sometimes smaller than) 1.
This confirms our prediction in § 3.1 that there should be a
temporary local gravitational instability at the spiral arms.
Since the presence of this instability is a result of the nonlocal
(long-range) nature of the gravitational interaction and is
brought about by the relative phase shift of potential and
density in an open spiral pattern, we expect the strength of the
gravitational instability to correlate with the value of the phase

10 This decrease in g, at a spiral phase after the shock does not mean that
the stars, on the average, are cooled by the shock. First of all, an average star is
not following a circular trajectory such as our azimuthal plot is displaying;
rather its trajectory is turned sharply inward at the location of the shock,
similar to the gas streamlines shown in Fig. 4 of Roberts (1969). So the down-
stream location for the mean orbit of a star would be at a slightly smaller
radius after the shock. Second, as we have shown in § 3.1, the spatial distribu-
tion of the velocity dispersion is partially produced by the mean flow field in
the spiral potential, and this is not the same as the temporal behavior of stellar
velocity dispersion at a fixed location. There is in fact a secular increase in the
stellar velocity dispersion, as well as a secular increase in @, which is observed
both in the Donner & Thomasson (1994) simulation and in the current simula-
tion.
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shift in a quasi-steady state. If the spiral pattern changes sig-
nificantly on the local dynamical timescale, however, even at
galactic radii where the phase shift is small, the disk material
could still “unexpectedly” run into the spiral potential when
crossing the spiral arm and be driven beyond the instability
threshold. This has been found to be the case in our N-body
results.

Similar behavior of X, g,, k, and Q are also found for other
radial locations, except for the fact that for a location outside
corotation, the maximum of ¢, occurs at a spiral phase after
the potential minimum, instead of before the potential
minimum as is shown in Figure 5b. This last point is consistent
with the fact that outside corotation, the sense of the material
entering the spiral shock is reversed, so the spiral phase after
the shock now corresponds to the upstream location for the
streaming stars.

From Figures Se and 5f, we see that the velocity components
parallel and perpendicular to the spiral arm follow a trend of
variation similar to that found by Levinson & Roberts (1981)
in their two-dimensional hydrodynamical simulations of
gaseous shocks (compare especially with their Figs. 8 and 9).
Note that due to the inclusion of the self-gravity of gas, in their

step 3200

ZHANG

step 3600

Vol. 457

case, and the self-gravity of stars, in our case, the velocity
jumps at the spiral arms both in their calculation and in our
current calculation are not as sharp as that for the non-self-
gravitating gaseous shock of Roberts (1969).

In Figure 6, we plot the disk morphology at three different
time steps, as well as the azimuthal profiles of the grid density
and potential at radius r = 15 (the location of the circle in the
first frame) for the corresponding time steps, to illustrate the
shock steepening process and its relation to the local phase-
shift value. The density profile is seen to steepen with time from
a more sinusoidal profile to a shocklike nonlinear profile. It is
also seen from Figure 6 that the shock strength increases as the
local phase shift increases, although there seems to be a time
lag between the moment when the phase shift is largest (bottom
middle frame) and the moment when the phase shift succeeded
in compressing the density distribution into the narrowest
nonlinear profile (bottom right frame). The shape of the density
distribution in the middle frame, however, has the best resem-
blance to the classical hydrodynamic shock, where there is a
very steep rising edge followed by a much more gradual falloff.

The time lag observed in Figure 6 between the moment of
the large phase shift and the moment of narrowest density
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FiG. 6.—Steepening of spiral shock with time. Top three frames: Surface morphology evolution. Bottom three frames: Azimuthal density (solid line) and negative
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distribution is not unexpected. Only when a (nonlinear) spiral
mode reaches a quasi-stationary stage can we expect an exact
correspondence between the local phase-shift value and the
local shock strength, whereas the state of the art of N-body
simulations is still such that the nonlinear profile of a spiral
mode cannot yet be made quasi-stationary, even though the
underlying m = 2 mode is indeed found to have achieved a
quasi-stationary amplitude in both the Donner & Thomasson
(1994) simulation and in our current simulation. Despite the
incompetency of the current N-body simulations in producing
long lasting large-scale spiral shock distribution, we do con-
tinue to believe that real galaxies can do so for much longer
than the local dynamical timescale, just from the number of
observed spirals which have well-defined grand design spiral
patterns. Although we still wait for the further improvement of
the computational capabilities!! and the art of N-body build-
ing to fully confirm our prediction that the dissipation effect
induced by the collective instability at the spiral wave crest is
responsible for sustaining the phase-shift distribution in a
quasi-stationary spiral structure, even with the present N-body
results, we have at least verified that whenever there is a shock
steepening process in a piece of spiral arm, the present and
immediately previous potential and density profiles are phase-
shifted in the correct sense. So the phase shift appears to be
driving the shock to steepen toward a level at which dissi-
pation in the shock matches the local phase-shift value, with
the phase shift itself given by the global Poisson integral.

Due to the presence of the local gravitational instability at
the spiral arms, the width of the spiral shocks is effectively the
size of the instability structure formed, i.e., on the order of 1
kpc for a galaxy like our own, instead of the free particle mean
free path.T2 In other words, whenever there is a local gravita-
tional instability, the range of influence of the gravitational
scattering potential is no longer restricted to that around the
individual particle itself but rather around the collection of
particles that form the instability. Such views have already
been expressed in Kulsrud (1972). The observed narrow width
of the dust lanes in the leading edge of many spirals, on the
other hand, may very well reflect the size of the gas cloud mean
free path in the spiral instability, which could be smaller than
the stellar mean free path there if the two fluids are not com-
pletely coupled.

The signature of spiral shocks in the stellar component has
also been found in observations (Elmegreen & Elmegreen
1989), where it is noticed that for many spiral galaxies, the
leading edge of the spiral arm is generally sharper than the

11 1t has often been claimed in the literature that the number of particles
used in the N-body simulations of spiral structures does not seem to matter, as
long as the number is large enough so that binary relaxation is negligible. We
have found that this conclusion seems to be valid only in cases where a spiral is
formed as the result of the tidal interaction with a companion galaxy, or, in the
case of a spontaneously formed spiral, if one is interested in the growth rate
and pattern speed of m = 2 component only, but not in the highly nonlinear
spiral shock structure.

12 Note that for very small wave amplitude, the degree of steepening of the
spiral wave can be very mild, as is the case during the initial growth phase of
the wave. For such a wave, the mean free path of the particles in the spiral-arm
gravitational instability is of the same order as the azimuthal wavelength of the
m = 2 mode. Whether to call such a wave a spiral shock or not becomes purely
a matter of semantics. In essence, there is not a sharp transition from a mild
spiral instability to a strong spiral shock. There is only the gradual reduction
of the mean free path of the particles in the spiral arm instability as the wave

_ amplitude increases. The dissipation effect due to the phase shift is expected to

be present throughout the wave growth process, although not always at its full
capacity if the wave has not reached quasi-steady state.
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trailing edge, and the shape of the wave in both the blue and
the near-infrared band has the appearance of a water wave on
the verge of breaking up. Looking back to the famous pho-
tographs of M51 referenced in Binney & Tremaine (1987, p.
342), which were originally obtained by Elmegreen (1981), we
are much more aware now that the sharp density contrast,
especially in the red frame of the picture, is strong evidence for
the presence of spiral shocks in the stellar medium.

The term “ gravitational shock ” has been defined and used
by Spitzer (1987, p. 110; see also Spitzer & Chevalier 1973) to
refer specifically to the transient external gravitational pertur-
bations experienced by a globular cluster when crossing the
galactic plane or passing near the galactic center. We comment
briefly here on the relation of Spitzer’s gravitational shock to
the spiral gravitational shock discussed in the current paper.
Both types of gravitational shock are capable of inducing a
temporary local gravitational instability on the originally mar-
ginally stable, self-gravitating mass ensemble, therefore acceler-
ating the relaxation and evolution of the local cluster of matter.
However, due to the unidirectional entry speed of the orbiting
matter into the spiral shock, there is a unidirectional transfer of
angular momentum caused by the spiral gravitational shock,
besides the relaxation effect it induces, whereas in the case of
the globular cluster the transient external gravitational pertur-
bation causes mainly core contraction and the escape of stars
from the cluster (Spitzer & Chevalier 1973).13

4. DISCUSSION

4.1. Further Comments on the Results of N-Body Simulations

In virtually all of the N-body experiments which formed
spiral patterns, it is observed that there is a tendency for stars
to accrete inward in the inner disk. In cases where a spiral
mode is formed, the particles are found to accrete inward inside
corotation and excrete outside corotation (Donner & Tho-
masson 1994). This same trend is also observed in our own
N-body results.

In Figures 7 and 8, we have plotted the different segments of
a typical orbit inside corotation and a typical orbit outside
corotation, respectively, both obtained from the N-body simu-
lations described in § 3.2. Note that the force interpolation
scheme used in the N-body simulation would smear out any
small-scale “kinks” in the orbit that could be produced by the
local gravitational instability at the spiral arms. These kinks
are expected to be very gentle in any case for real galaxies,
since they are produced by small-angle scatterings, with the
particle mean free path for scattering on the order of 1 kpc. The
cumulative effect of these small-angle scatterings nevertheless
survives, as is reflected in the often sharp change of the orbital
orientation, observable especially in Figure 7, which is remi-
niscent of the sharp-pointed oval-shaped streamlines in a
gaseous spiral shock (Roberts 1969, Fig. 4).1* The dissipation
effect of the spiral shock is also revealed through the secular
decease (or increase) in the mean orbital radius. In Figure 9, the
corresponding frames for the disk surface density are plotted.

13 Though there could indeed be a small amount of momentum transfer of
the globular cluster to the galactic plane due to the impact, if the crossing
speed is high.

14 Note, however, that Fig. 4 of Roberts (1969) plots the streamlines in a
corotating frame, whereas our orbits are plotted with respect to the lab frame.
In the corotating frame of the spiral pattern, the orbits obtained in our N-body
simulation are found to be essentially chaotic. A coherent spiral pattern,
however, is nonetheless seen to be supported by such chaotic-looking orbits,
presumably because at each spiral-arm crossing, the action of the spiral shock
enhances the phase correlation of the chaotic orbits with the spiral potential.
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F1G. 7.—Evolution of orbit trajectory for a typical star inside corotation

The figure clearly demonstrates that there is a secular increase
in the disk surface density in the inner disk region, together
with a slight density increase in the outer disk, consistent with
the trend shown in Figures 7 and 8 for the mean orbit evolu-
tion. Note that the second density peak on some of the frames
in Figure 9 near r = 10 is due to the temporary accumulation
of disk matter near the inner Lindblad resonance (ILR).

It has been suggested (Carlberg 1986) that the secular orbital
change observed in the N-body simulations, at least in the case
of transient spirals, is due to the effective broadening of reso-
nances as a result of the transient forcing. However, a simple
integration of the stellar orbit shows that this could not poss-
ibly be the case. In Figures 10a and 10b we have plotted a
single star’s orbital response to two transient spiral forcings of
differing durations. The parameters used for the simulation are
similar to those for the solar neighborhood and are given in the
figure caption. The first case is a slow turning on and off of a
spiral potential, with a timescale of variation of 10!° yr. The
second case is a rapid spiral perturbation, with the timescale of
the impulse being 10® yr. It is seen that in the impulse forcing
case there is a residual epicycle motion after the forcing is past,
whereas in the slow forcing case there is no residual heating
(which is strictly true only for spiral forcing amplitude that is
not too large). Both of these results are consistent with the

order-of-magnitude estimate of Binney & Tremaine (1987, p.
482). However, what is also clear is that there is no secular
change in the mean orbital radius, whether the transient is fast
or slow. The view that the secular orbital change observed in
the N-body simulations cannot be due to the resonance-
broadening effect is also supported by the fact that these
secular changes in the N-body orbits always consist of the
simultaneous decrease of the inner and outer limits of orbital
migration (for a star inside coroiation), or the simultaneous
increase of the two limits (for a star outside corotation),
whereas, under the influence of resonant potential, the inner
radius of the migration of a star will decrease, and the outer
radius of the migration will increase, and the resonant orbit
covers a larger and larger region of the space as time goes on,
which is not the kind of behavior we observe for the orbits in
Figures 7 and 8. Therefore, the secular orbital change observed
in the N-body simulations cannot be explained by the behavior
of a single orbit in an applied spiral potential. It has to be a
result of the collective dissipation effect induced by a self-
sustained global spiral structure. o .
The presence of a collective dissipation process at the spiral
arms could also explain why, in most N-body simulations of
spiral structures, the heating rate of the stars is found to be
much higher than the angular momentum transport rate (see,
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Fic. 8.—Evolution of orbit trajectory for a typical star outside corotation

e.g., Carlberg 1986), whereas, in reality, we expect the two to be
of the same order for quasi-steady evolution, as is required by
the virial theorem. From the discussion in the current paper,
we see that collective dissipation effectively causes “ collisions ”
(scatterings) among the stars which are crossing the spiral
arms. This greatly accelerates the rate of local relaxation. From
such a collisional process some stars can carry away much of
the orbital angular momentum but leave energy behind in the
form of heat. This effect is expected to be more pronounced in
the N-body simulations than in real spiral galaxies, since
Gaussian random noise has an N~ !/2 dependence, where the
relevant N here is the total number of particles in the local-
gravitational-instability clump at the spiral arms. Thus it is
possible for the N-body disk to evolve to a Q of 2-3 in just a
few rotation periods, whereas in the outer disk of observed
spiral galaxies the Q is found to be close to unity.

Because of the nature of the spiral pattern as a global insta-
bility, which always has its associated collective dissipation
and relaxation effect, the N-body simulations which model the
spontaneous formation of spiral patterns cannot be made truly
collisionless, even if such a code has no binary relaxation at all
before the emergence of a spiral structure. A similar view has
also been expressed in Weinberg (1993).

4.2. Comparison with the Results of Lynden-Bell & Kalnajs
' (1972)

There are two major conclusions in the seminal paper of
LBK. The first is that a trailing spiral structure transports
angular momentum outward; the second is that a disk star
does not exchange angular momentum with a quasi-stationary
spiral wave except at the resonances. We now compare these
two conclusions of LBK with the results of the current paper.

First of all, what LBK showed about the angular momen-
tum transport was in fact a weaker result than that stated
above. They have indeed shown that the sign of gravitational
torque coupling C, is such that a trailing spiral wave trans-
ports angular momentum outward. However, as is also shown
in the same paper of LBK, there is a second torque coupling
C* due to advection (lorry transport), which also contributes
to the total torque coupling between the inner and outer disk
in a spiral galaxy. When these two contributions are summed
together, LBK found that, at least for waves which are not too
long, the total torque coupling is in the form of angular
momentum density multiplied by the group velocity of the
wave (this result had previously been obtained by Toomre
1969). Therefore, for a wave inside corotation, which has nega-
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FiG. 9—Evolution of disk surface density. The dashed line in each frame indicates the surface density at the earlier time step, and the solid line the later time step.

tive angular momentum density, the net group velocity of the
wave must be directed inward in order for the trailing wave to
transport angular momentum outward. Fortunately, this con-
dition is satisfied for most of the trailing spiral structures we
observe, thanks to the overreflection mechanism at corotation
(Mark 1976; Toomre 1981), which makes the inward-
propagation trailing wave train always more powerful than the
outward-propagating leading or trailing wave trains.
Therefore, the essence of LBK’s first conclusion can be re-
phrased as follows: a spiral wave carries angular momentum
with it as it propagates. However, due to the second conclusion
of LBK, that of no angular momentum exchange between a
nonresonant disk star and a wave, the source and sink of the
outward angular momentum transport were thought to reside
only at the Lindblad resonances for a transient wave train.
Moreover, for galaxies which have a Q-barrier that shields the
ILR, so that a spiral mode can grow, the outward transport of
energy and angular momentum merely leads to the growth of
the wave mode both inside and outside of corotation, but no
evolution in the basic-state morphology. In the latter case, the

waves inside and outside corotation become the source and
sink of each other, with essentially no wave interaction with
the basic state except for the fact that the growing number of
stars which participate in the growing wave ultimately come
from the basic state.!®

The torque coupling integrals obtained by LBK concerns a
different physical process from the torque integral in equation
(4) of the current paper. The detailed discussion of the relation
between the different torque integrals will be given in Paper IL
In essence, LBK torque coupling integrals describe an angular
momentum transport process by a trailing spiral wave, -
whereas the torque integral in equation (4) describes the
angular momentum exchange between the disk stars and a

!5 In fact, the facilitation of wave growth through the outward transport of
angular momentum was the chief function that LBK had attributed to a
trailing spiral structure. This is because a spiral wave has negative angular
momentum density inside the corotation, so a process which removes angular
momentum from the inner disk is expected to lead to wave growth. This was
also the reason that LBK had named their paper, “ On the Generating Mecha-
nism of Spiral Structure.”
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Fi1G. 10.—Orbit response to transient spiral excitations. Modulation func-
tion is —cos (t/t,m) + 1 for t < 2t,, and zero otherwise. (a) Slow transient with
t, = 10'° yr. (b) Fast transient with ¢, = 10® yr. Parameters common to these
two cases are as follows: the strength of the spiral is 5%, the pitch angle of the
spiral i = 20°, Q, = 13.5 km s~ " kpc™!, n(t = 0) = 8.5 kpc, v, = 220 km s},
and the total integration time is 20 Gyr. The test particle was initially on a
circular orbit.

quasi-stationary density wave (i.e., the loading and unloading
of the angular momentum onto and out of the wave). A steady-
amplitude density wave mode acts simply as an intermediary
for the absorption, transport, and dissipation of the disk
energy and angular momentum, and the wave itself can remain
quasi-stationary on the timescale of a Hubble time (Paper II).
In this sense, the entire wave is being used as a lorry for the
outward transport of angular momentum. Therefore, we now
see that over the larger portion of the lifetime of a spiral galaxy,
the main function of the outward angular momentum trans-
port by a trailing spiral structure is not to allow the wave to
grow, as LBK had originally envisioned, but rather to allow
the basic state to evolve.

We now take a closer look at the second conclusion of LBK,
that of no angular momentum exchange between a spiral wave
and a nonresonant star, which LBK had demonstrated to
second order. From a direct numerical integration of nonlinear
orbits in a spiral potential (Zhang 1995d), we found that the
conclusion of no angular momentum exchange is the correct
conclusion, in fact, to all perturbation orders in a nonlinear
calculation, if the star only experiences a smooth axisymmetric
plus spiral potential but no collective effect. This conclusion is
also supported by the fact that the Jacobi integral is a constant
for a stellar orbit in a smooth spiral potential. In order to
conserve the Jacobi integral, the amount of energy loss and the
amount of angular momentum loss of a star in its interaction
with the wave have to have the ratio Q,, which is, in general,
not equal to Q. Therefore, the secular exchange of energy and
angular momentum of a single star with a quasi-steady wave is
prohibited by the constancy of the Jacobi integral at non coro-
tation radii, if there is no collective dissipation mechanism
which converts part of the stellar orbital energy into heat (i.e.,
epicycle motion), whereby the phase of the noncircular com-
ponent of the stellar orbital velocity is decorrelated with the
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phase of the spiral wave.!® This will be addressed further in
Paper III. In fact, without collective dissipation, a finite-
amplitude spiral wave could not even obtain its coherent
organization and form a self-consistent pattern (Zhang 1995d).
Only by dissipating part of their orbital energy at each crossing
of the spiral arm potential do stars participate in wave motion.
This is a view of the maintenance of the spiral pattern which is
quite different from that offered by the “kinematic spiral”
mechanism, where the orbits are the true “building blocks” of
a global pattern. In essence, the single-orbit response in an
applied spiral potential does not tell the whole story of a self-
consistent spiral wave, since it does not incorporate collective
effects.

4.3. Other Astrophysical Consequences

The spiral-induced collective dissipation process leads to the
secular transfer of energy and angular momentum from the
disk material to the spiral density wave in the inner disk. Since
the wave inside corotation has negative energy and angular
momentum, upon receiving energy and angular momentum
the wave will be damped in amplitude. Similarly, the wave
outside corotation is also damped, owing to its giving away
energy and angular momentum to the basic state. This is, in
general, a nonlinear as well as a dissipative process, as is reflec-
ted in the gradual deformation of the wave from sinusoidal
profile to the more sharply peaked nonlinear profile as the
wave amplitude increases. It is found that the phase shift calcu-
lated through the Poisson equation is not sensitively depen-
dent on the azimuthal profile of the wave, as long as the global
distribution of the spiral density (i.e., pitch angle and radial
falloff) remains the same. Consequently, the dissipation rate is
largely independent of the evolution in the azimuthal profile of
the wave. The growth rate of the wave, on the other hand,
decreases as the azimuthal profile of the wave is deformed due
to energy conversion from the m = 2 mode into the higher
harmonics in the azimuth. As a result, the growth rate and the
dissipation rate of the wave eventually reach an equilibrium, so
a nonlinear quasi-stationary spiral mode can be obtained
(Paper II).

Because of the secular energy and angular momentum
exchange between the disk matter and the wave, the disk
material (including both stars and gas) inside corotation spirals
inward, and the material outside corotation drifts outward,
and this leads to the secular evolution of the disk surface
density. The timescale of the radial mass accretion process for a
galaxy like our own is estimated to be on the order of a Hubble
time (Zhang 1992; Paper III), which is of the same order as
given by the early N-body simulations (Carlberg 1986), and
which is found to be able to account for the formation of the
quasi-exponential disk surface density profile and the forma-
tion of bulges in galaxies (Zhang 1995a; Paper III).

For stars moving on nearly circular orbits, the ratio of their
energy loss to the angular momentum loss is proportional to
Q, the circular speed of the disk. On the other hand, the ratio of
energy to angular momentum that can be absorbed by the
density wave is proportional to Q,, the pattern speed of the
wave. Since inside corotation Q > Q,, the complete transfer of

16 This is expected to be the case even at the Lindblad resonances. In other
words, the energy and angular momentum exchange between the basic state
and a quasi-stationary wave at the Lindblad resonances, found in many pre-
vious linear-order calculations, has implicitly incorporated collective effects.
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angular momentum from the disk material to the wave (since
the angular momentum has nowhere else to go) means that the
energy released by the disk material cannot be completely
absorbed by the density wave. The surplus of this released
energy contributes to the secular heating of the disk stars. This
is found to quantitatively explain the observed age-velocity
dispersion relation of the solar neighborhood stars (Zhang
1995a; Paper III).

The trend of evolution of the basic state of a spiral galaxy
due to the spiral-induced collective dissipation process coin-
cides with the trend found in the Hubble sequence from the late
to early spiral types, whereby a spiral galaxy gradually
acquires a thicker inner disk and a larger bulge. This change in
the basic-state property, in turn, results in the change of the
kind of spiral modes present, from the more open type to the
more tightly wound type (Bertin et al. 1989a, b), again consis-
tent with the correlation observed in the Hubble classification.
So it is likely that the Hubble sequence, when viewed in the
reverse direction, indicates a temporal evolution sequence. We
will address this further in Paper I11.

5. CONCLUSIONS

In this paper we have proposed and analyzed a collective
dissipation process induced by a galactic spiral structure. This
process reveals itself as a phase shift between a self-sustained
spiral potential and density pair, and the dissipation effect indi-
cated by the phase shift is achieved though a mild local gravita-
tional instability at the spiral arms. Owing to the instability
condition and the dissipation process at the spiral wave crest, a
large-scale spiral structure is, in essence, a large-scale spiral
gravitational shock. We argue that the spiral-induced collec-
tive dissipation is the only means to account for the secular
orbital decay or increase observed in the N-body simulations
of spiral structure. The dissipation must be spiral-induced
because there is a clear distinction between the behavior of an
average stellar orbit that is inside or outside corotation, which
indicates that the secular orbital change must be due to a
mechanism which is related to the presence of the spiral struc-
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ture, instead of due to a nondiscriminating viscous force such
as dynamical friction. The dissipation must also be achieved
through a collective process because the non-self-consistent
calculation of orbital response under an applied spiral poten-
tial shows that the mean radius of a single orbit never changes
secularly, whether the applied spiral potential is quasi-steady
or transient. Collective dissipation can operate only at the
spiral arms, because only there can neighboring stars interact
with one another directly, as a result of the instability condi-
tion produced there by the potential-density phase shift. We
expect that a similar phase-shift-related dissipation mecha-
nism is also operating in disks which contain other non-
axisymmetric (as well as nonbilaterally symmetric, etc.) types of
instability structures, such as in barred galaxies where the two
sides of the bar are offset, and in stellar accretion disks which
contain m = 1 spiral instabilities.
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APPENDIX A
A PHASE SHIFT GIVEN BY THE POISSON EQUATION

Due to the long-range nature of the gravitational interaction, the potential field generally has a different distribution from the
mass density which generates it. In the case of the spiral wave, this difference appears in the form of a phase shift between the
potential and density spirals related through the Poisson equation.

Although the author discovered the existence of phase shift in a Poisson transform pair independently through numerical
integration (Zhang 1994), motivated by the conviction that spiral galaxies are dissipative structures, and a phase shift must arise if
this dissipation is to be achieved, she later learned that mathematicians have long since known about this fact in the study of
potential theory, especially in the branch which deals with the spiral transformation (Snow 1952), which has been applied suc-
cessfully by Kalnajs (1965, 1971) to the study of galactic spiral structures. However, before the current work, this phase shift in the
Poisson transform pair was mostly considered just a nuisance in the analytical calculations of the spiral modes, and no one had
suspected the relevance of it to the collective dissipation and evolution of spiral galaxies.

Since the presence of phase shift in the Poisson equation has never been discussed before in any of the astrophysical literature, we
present here a brief derivation due to A. J. Kalnajs (1994, private communication), by employing the spiral transformation.

Define u = Inr; it follows that a power of a of r, r*, can be written as e®.

From Snow (1952) or Kalnajs (1971), we know that a reduced density

: 7’3/22(7‘, ¢) — ei(am+m¢) (28)
will produce a reduced potential

ri2¢9°(r, ¢) = —2nGK (o, m)e’@*m® | (29)
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where K is the ratio of several gamma functions (Kalnajs 1971). Since K(a, m) is an analytic function of o, the above relation between
the reduced potential and reduced density is still true for complex values of «, provided that the imaginary part is sufficiently small.
Write

a=a, + i, (30)
and we have
ei(a,+ iag)u —e —ameiu,u i (3 1)

The above expression, when substituted back in equations (28) and (29), indicates that, for an infinitely long density spiral with
radial density falloff differing from r~3/2, its corresponding potential spiral, although it still has the property that its radial
modulation function is r times the radial modulation function of the density spiral, is phase-shifted with respect to the density spiral
because K(a, m) now becomes slightly complex. By expanding K(a, m) in a Taylor series around a,, we have

K(a, m) = K(a, + 0i) + %Ias (ia;) + higher order terms . (32)

a=ar

For a, > 0 (which corresponds to a trailing spiral in our convention), it can be shown that the first derivative of K(«, m) is negative
(Kalnajs 1971, Table 1) for small «. Therefore, if o; > 0, which means that the density (potential) falloff is faster than r~3/2 (r~ 1/2), the
potential spiral will lead the density spiral (i.e., the potential is in the form of Ce/l*r'ar *m(@~¢0)l with ¢, > 0), and vice versa for a; < 0.

The presence of a phase shift in the sense we described above can also be seen from the higher order asymptotic expansion of the
differential form of the Poisson equation (Shu 1970, eq. [11]).

APPENDIX B

PHASE SHIFTS IN THE EULERIAN EQUATIONS OF MOTION AND IN THE LINEAR
PERIODIC ORBIT SOLUTION

In order to obtain a self-consistent spiral wave solution which admits a phase shift, there has to be a corresponding phase shift
which exists in the potential and density relation given by the equations of motion. As is shown in equation (D12) of Lin & Lau
(1979), the relation between the spiral potential and density, obtained from the higher order asymptotic solution of the linearized
Eulerian equations of motion and the equation of continuity, indeed contains a so-called out-of-phase term; and careful analysis
shows that the sign of this term is such that for a trailing spiral, the density leads in phase to the potential inside corotation, and vice
versa outside corotation.

Since the surface density in the case of a stellar disk is ultimately made of the superposition of stellar orbits, we expect that the
relative phase shift of the potential and density spirals is also reflected in the orbital response of a star in a more open type of spiral
potential. Especially in the linear regime, where there is an exact correspondence between the Eulerian and Lagrangian approaches,
at least for the pressureless case (Lau & Bertin 1978), a phase shift has to exist in the orbit solution if it exists in the Eulerian fluid
solution. In what follows we demonstrate that there is indeed a phase offset in the orientation of the linear periodic orbit, which is
obtained in the corotating frame of a spiral potential.

The linearized orbit equations in a frame that corotates with the pattern at an angular speed Q, are (Binney & Tremaine 1987,
egs. [3-114a] and [3-114b])

. a*® od
ry + ( drzo - Qz)mﬁ —2ryQ, ‘151 = - <6—rl>,o > (33)
. P 1 [od
¢y +2Q —1=—-<—‘) , 34
1 0 "o r(;; a¢ ro ( )

where r, and ¢, are the perturbed orbital coordinates, ®, is the axisymmetric potential, Q = [(1/r)(d®,/dr)]'/? is the angular speed,
Qo = Q(ro), with r, the zeroth-order radius where the potential and the angular speed are evaluated, and, finally, ®, is the
perturbation potential, which we choose to be of the spiral form

@,(r, ¢) = F(r) cos [f(r) + m¢] , (33

where ¢ = ¢(t) = ¢4() + (Qo — Q,)t, which for nonresonant stars can be approximated by ¢ = ¢,(r) = (Q, — Q,)t.
Integrating equation (34), we obtain

’ r ( l)(ro $0) 1
Q -L— _ D)o, .
. +2Q, . 7 Q - + constant (36)
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Substituting equation (36) in equation (33) to eliminate ¢,, we obtain

- o0 D,(re) 1
2, = (=L — 9 1o
fi KT ( or )(ro,¢o) ° To QO - QP ’ (37)
where we have ignored the constant term for the same reason as given in Binney & Tremaine (1987, p. 480), and where
aQ? ) a*e, 2
Ko = <r o +4Q )m = < ). + 390 (38)

is the epicycle frequency.
Using the expression of the perturbation potential of equation (35), the forcing terms on the right-hand side of equation (37) can
be found to be

F(ry) 1
ro Qo —Q

P.

ths = [—F (ro) — 2Q J cos [f(ro) + mo] + F(ro)k(ro) sin [£(ro) + mo] , (39

where @o = @o(t) = (o — Q,)t, and k(ry) = (df/dr),o.
We now see clearly that the forcing consists of two terms which are 90° out of phase with each other. We thus expect that the

forced orbital response, or the particular solution of equation (37), will also contain two similar terms. In fact, the particular solution
of equation (37) can be written as

1
0= i || 0~ 20 e | cos L + mbd + Fokt sin U7t + ] 40

This solution for r, can be further written as
r(t) = C sin (m¢’' + md) , 41)
where ¢’ = f(ro)/m + ¢o,and

C=./4+B, (42)

— _1_ tan~! (é) 4

= tan"' (), 43)

with
~ 1 o g 1

A= Z—w@, -y [ G oy Q,,] ’ @4

and
1
B= F(ro)k(ro) - (45)

kg — mHQo — Q)

Note that it is the sine form of the orbital response that should be compared with the negative cosine form of the forcing spiral
potential in order to derive the relative phase shift. We have also assumed F(r) < 0 here.
Therefore, we have derived that the phase shift J of the orbit with respect to the forcing potential can be expressed as

1 [ =Fl(ry) = 2Q6F(r)/rol /(@ — Q)
8= tan" { F(ro)k(ro) } '

(46)

Since the rate of amplitude variation of the density wave F'(r,) is expected to be small, equation (46) can be further simplified to
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which tells us that the phase shift J is negative for a trailing wave (k > 0 in our current convention) inside corotation. A negative &
here means that the orbit leads in space (lags in time) with respect to the spiral potential; the opposite is true for orbits outside the
corotation. This agrees with that obtained from the fluid equations of motion.

- The orbit phase shift we have just derived is absent from the 